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Abstract. We illustrate the relationship between square-root branch points of energy 
eigenvalues and the decay rates of metastable states in a simple model in quantum 
mechanics involving decay through a delta-function potential barrier. The ‘infinite 
volume’ limit of the cut-structure is found to have an interesting pathology. 

1. Introduction 

There has been interest in recent years in the decay of metastable states in quantum 
and statistical physics (see reference list). The analytic structure of energy eigenvalues 
as a function of parameters of the theory plays an important role in such problems. 
This article is concerned with the decay rate in quantum mechanics of metastable 
states in a potential of the form illustrated in figure 1. Our aim is to link the following 
two approaches to this problem. 
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Figure 1. Form of potential admitting metastable states. 

One standard approach looks for stationary states (i.e. not necessarily normalis- 
able functions $ satisfying H$ = E $ )  which satisfy the outgoing wave boundary 
conditions in region IV and tend to zero in region I (of figure l ( a ) ) .  The calculation 
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can be done for an arbitrary potential function V using for example the WKB approx- 
imation. The resulting equations imply that the allowed eigenvalues E must be 
complex, with the (negative) imaginary part of E related to  the decay rate of the 
metastable state initially localised in region 11. 

A second approach starts from a ‘finite volume’ system in which the region into 
which the metastable state decays is of large but finite extent (see figure l(b)). One 
looks for normalisable energy eigenstates requiring that the wavefunction vanish in 
regions I and V. In this case, the Hamiltonian is self-adjoint and energy eigenvalues 
are correspondingly real. For energy levels not too close to the top of the potential 
barrier in region I11 there is little tunnelling and the spectrum is close to that of two 
disconnected potential wells one of which is very wide. This is illustrated in figure 2 .  

Figure 2. Qualitative spectrum for potential as 
in figure 1. The wide potential well gives rise to 
a closely spaced spectrum; the extra states are 
localised in the metastable region if the potential 
barrier is large. 

The most important corrections to this naive spectrum occur when two levels are very 
close together, This is related to the phenomenon of level crossing which occurs as, 
say, the height h of the metastable potential well is varied, and which gives rise to 
pairs of complex conjugate branch points (in the complex h plane) which can be 
connected by vertical branch cuts. That this is true can be seen by taking a 2 x 2  
matrix representation of the Hamiltonian with respect to the two almost degenerate 
states. This takes the form 

(f :h) 

where the level crossing occurs at h = 0 and e represents the (small) overlap between 
the states due to the tunnelling effect. The eigenvalues of this matrix are 

E = * J ( h 2 + e 2 )  (1) 
which shows the branch points in energy as a function of complex h to be at h = * ie. 
The two branches in (1) can be represented in the two-sheeted complex h plane cut 
from + ie to - ie. If the cuts are placed from ie + im and - ie + - m, we can obtain on 
the first sheet the eigenvalue of the ground state and on the second sheet the 
eigenvalue of the higher energy state. If we wish to obtain a description of a 
metastable state which starts as the ground state for h < 0, say, and survives to become 
the excited state for h > O ,  we go from one branch of the square root in (1) to the 
other. This is achieved by placing the cut between the points *id. Analytic continua- 
tion to the metastable state can be done only by going round the branch cuts. 

The physical basis for this description of metastability is that for large h, away from 
the level crossing, the system is described by the same state (the eigenvector (1, 0)) 
both for h < 0 ana‘ h > 0, i.e. the state of the system is almost unchanged by the level 
crossing. The metastable state is traced because it remains essentially unchanged 
through the level crossings. (From the standpoint of time-dependent perturbation 
theory this is the ‘sudden approximation’. In the opposite extreme-the ‘adiabatic 
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approximation’-the state label is unchanged. Interestingly, corrections to the adi- 
abatic approximation, i.e. label changing transitions, can be computed by contour 
integrals around vertical cuts (Landau and Lifshitz 1965), but we emphasise that 
although vertical cuts between level-crossing branch points play a role in both cal- 
culations the underlying physics is different. In particular the distance of branch point 
into the complex plane reflects the rate of the process, being small in our case and 
large for the Landau-Lifshitz calculation.) 

The sequence of level crossings suffered by a metastable state as the height h of the 
metastable potential is varied implies that a metastable energy level is analytic in the 
cut h plane as shown in figure 3.  The importance of vertical cuts in the description of 
metastability in the Ising model is discussed by Newman and Schulman (1977) and by 
McCraw and Schulman (1978). In the present paper, we wish to show in a simple 
model in quantum mechanics how these vertical cuts condense, for large volume, to 
reproduce the imaginary part of E (and hence the lifetime) encountered in the first 
type of calculation outlined above. 

1 z 
E 

Figure 3. Cut structure for a metastable level in the complex h plane. 

We also show that when the volume increases beyond a certain size the branch cut 
structure is lost but the analytic continuation of the finite volume energy level 
continues to give the lifetime even though the underlying quantum mechanics 
problem no longer yields the analytically continued energy. In effect the limits 
[volume + CO] and [(complex h)+  (real h ) ]  do not commute. This will be illustrated 
below. 

2. Calculation 

The potential we choose is shown in figure 4. In the allowed region the Hamiltonian 
(in suitable units) has the form 

+1 x > o  
-1 x < o .  

H = p 2  - h e ( x )  + AS (x), E ( X ) =  

Thus 2h is the height of the metastable potential and the delta function potential 
barrier has strength A .  The size of the metastable well is a ,  and the stable well 6, so 
that boundary conditions $( - a )  = $(b )  = 0 are imposed. We are interested in b >> a. 
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I I  

Figure 4. Potential for simple model calculation. Region I is x < 0. Region I1 is x > O .  

For the calculation of the metastable lifetime we first use the method described 
above in which ' b  = 00' and we allow only outgoing waves in region 11. The wavefunc- 
tions take the form 

G1(x) = sin k(x + a ) ,  x<O,  k 2 = E - h  

glrII(x) = B e"", x > O ,  1 2 = E + h  

where E is the energy of the state. The  8-function imposes a discontinuity in $' at 
x = 0 and the equation for E (or k and 1 )  is 

- k c o t k a + i l - A  = O .  (3 ) 
For large A (i.e. small tunnelling) we can neglect the imaginary term in this equation 
and the values of k are close to the zeros of sin ka. (This gives the energy levels in 
well I if there is no  tunnelling into 11.) In this region we can make the replacement 

k cot k a  - k/(ka - T )  (4 ) 

for the lowest metastable state (excited states can be similarly treated). The  resulting 
equation yields 

2 1 /2  2iT2 
(a + 1 / A ) 2  A2a3 

2 
T 

E - h =  -- (2h  +>) + 0 ( 1 / A  '). 

The negative imaginary part in E gives rise to a decaying amplitude for the metastable 
state with decay rate 

2 1/2  -=-(2h+>) 1 4 r 2  +O(l/A3). 
r A2a3 

We now show how the imaginary part in ( 5 )  is reproduced in a 'finite volume' 
calculation with wavefunctions 

(LI(x)=A sin k(x + a ) ,  x C O ,  k 2 = E - h  

i,bIr(x) = B sin l(x - b) ,  x>O,  1 2 = E + h .  

The  eigenvalue condition analogous to (3) is now 

k cot k a  + I  cot 16 + A  = O .  (7 ) 
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For large A ,  the eigenstates have eigenvalues close to those determined either by 
sin ka - 0 (wavefunction localised in the metastable region) or by sin lb - 0 (wave- 
function localised in the stable region). The level crossings which give rise to the 
vertical cuts occur for values of h for which both sin ka - 0 and sin lb - 0 for large A .  

The location of the branch points due to the level crossings can be obtained 
analytically for large A by making the approximations cot ka - (ka -=)-I  and cot lb - 
(16 - j r ) - ’ .  This corresponds to the crossing of the first metastable state with j th level 
in region 11. Expression (7) then becomes 

kl + a k  + p l +  y = 0 

a = - j r ( 1  +Aa) / (b  + a  +hub)  

p = --=(I +Ab) / (b  + a  +Aab) 

y = Ajr2/ (b  + a  +Aab). 

k *12 = CY 2k + p212 - y 2  + 2 ( 4  - y )k l .  

(8) 

(9a 1 
(96)  

(9c )  

(10)  

where 

Squaring equation (8) gives 

For large A ,  equation (9) shows that a, p and y are 0(1), while ap - y = 0 ( 1 / A 2 b ) .  
Although it  turns out that this fact is not sufficient to justify the neglect of the kl term 
in equation (IO), i t  does allow a derivation based on successive approximation. We 
therefore define 

p 2  = 7’ - 2kl(@ - y )  = y 2  - E .  

Using the definitions of k 2  and 1 2 ,  equation (IO) becomes a quadratic equation for the 
two eigenvalues in the level crossing region and we find 

E = +(a2 + p2)*  +[(2h - + p’)’ + 4(a2p2 - p  2 )] 1 / 2  . 
In factoring a 2 p 2 - p 2 ,  the term ap + p  can be well approximated by cup + y. However, 
in dealing with ap - p  a subtle reappearance of an ostensibly negligible term occurs: 

E ap - p  = ap - J ( y 2  - E )  = ap - y +-+ O(E2/ y’). 
2Y 

The quantity E is proportional to ap - y and we obtain 

kl 
Y 

cup - p  = (ap - y)(  1 +-). 
Now k and 1 differ from r / a  and j r l b  respectively by terms of order 1 / A  and keeping 
only lowest order terms in 1 / A  

ap - p  = 2(ap - y ) .  

The expression for E is therefore 

( 1  1) 
E = +(a2 +p2)*  $[(2h - a 2  + p2)’ + 8 ( a 2 P 2  - y 2 )] 1/2  , 

The discriminant has been written so that i t  is easy to see that the degeneracy of the 
j th level crossing occurs at 

h = hj*iTi 
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where 
hi = r r 2 ( j 2 / b 2 - l / a 2 ) / 2 + O ( l / A )  

(We need these expressions only to leading order in l / A  to obtain the imaginary part 
in equation (5 ) ) .  

Thus the jth level crossing gives rise to a vertical cut between h = hi f iTi and the 
discontinuity of E across this cut, 

AE = 2[(h - h j ) 2 + ~ f ] 1 / 2 ,  (13) 

is real. Both the spacing and the height of the cuts shrink for large b, according to 
equation (12). One may smear their effect by means of a dispersion relation. If we 
take a contour C enveloping the vertical cuts we can evaluate it by summing the 
integrated discontinuities across each cut as in figure 5 .  Note that the contributions 
are pure imaginary since the discontinuities are pure real. A simple calculation yields 

where the integration variable T is defined by h' = hi + iT  and the expression (14) is 
correct only to leading order in T~ as required for large b. For large b, the sum on j can 
be replaced by an integral on the variable 12" (cf equation (12a)) 

and one obtains 

E ( h ) = - m /  2rr dh" J(2h"+ 7r'la') 
A a  h"- h 

This equation has the form of a dispersion relation wit.. the original contour C in 
figure 5. It implies that for large b the vertical cuts reproduce the effect of a cut along 
the h axis, in which the discontinuity comes from an imaginary part 

I m E = - -  27r2 (2h +$)l'* 
A2a3  

exactly as in equation ( 5 ) .  

Figure 5. Deformation of the integration contour C in the dispersion relation. 
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The apparent divergence of the integral in equation (15) is no problem since what 
one actually ought to be using is a twice subtracted dispersion relation ( E ( h ) -  h + 
constant+. . .). All our conclusions remain valid when the convergent form is used 
and so we spare the reader the additional calculations. 

It may be worth pointing out the distinction between what is going on in the E 
plane and in the h plane, In the E plane the energy value obtained in (5) is a pole in 
the Green function on the unphysical sheet (a ‘stationary state’ with unphysical 
boundary conditions) and hence sits well with the traditional picture of metastability 
in quantum mechanics, On the other hand, as an analytic function of h, E ( h )  is 
analytic (and single valued) in the entire half plane Re h < -7r2 /2a2 .  However, at 
h = -7r2/2a2 there is a branch point, evident from equation (5). For the dispersion 
relation contemplated above the branch cut is assumed to run along the real h axis, 
Re h > -7r2/2a2.  Taking E ( h )  for Im h > 0 to be as given in equation (15), E ( h )  in 
the lower half plane will just be its complex conjugate and the discontinuity is, as 
usual, twice the imaginary part. 

Although it may not be obvious, our calculations up to this point hold only for 
b << A 2a ’, so that although for large A setting sums equal to integrals (as we have done) 
is not invalidated, nevertheless, for the limit b + 00, A fixed, our conclusions are not 
true. Before writing formulae valid for very large b we first indicate why the condition 
b << A2a3 is physically reasonable in the context of our previous discussion and point 
out where in our calculations that condition was implicitly assumed. First introduce 
some notation. Let E ,  represent the solution of equation (3), given approximately by 
equation (5). Let E* be the solution to equation (7). 

For k - 7r/a the metastable state is supposed to be localised mainly in the region 
x < 0 with slight leakage into x > 0. Only under these circumstances would Eb (for h 
real and positive) be expected to equal E,. But the wavefunction leakage through the 
barrier (i.e. the ratio B / A  of equation (6)) is proportional to 1/Aa. Hence the total 
probability for being found in x > 0 is b/A 2 a 2 ,  while the probability to be in x < 0 is 
O(a). From this follows the condition b/A2<< a 3 .  This condition also plays a role in 
our assumption that the level k - 7r/a ‘interacts’ with only one level of the region 
x > 0 at a time. For this to be true one would expect the distance of the branch points 
from the real axis to be small compared to the spacing between levels. The solution 
equation (12) gives this condition as 

Our implicit use of the condition A 2 > > b / a 3  occurred in assuming Ilb-jrl<< 1, 
preliminary to deriving equation (8). That equation ultimately yielded a branch point 
at h = h i  *iTi so that Im 1 - T~ - l / A b ’ / 2  u3 l2 .  (Note that j / b  = 0(1).) Consequently, 
for the branch point ~ l b - j 7 r ~ ~ b ~ I m  l l-(b/A a ) and the assumption used in 
expanding the cotangent breaks down unless the condition A2a3  >> b is satisfied. 

To find formulae for branch points valid for all b we use a more general method, 
Let 

2 3 1 / 2  

F(E, h ) = k  cot ka  + I  cot Ib+A (17) 

with k and 1 defined in terms of E and h, as in (6 ) .  The function E ( h )  is of course 
defined by F(E, h ) =  0. Branch points will occur when, in addition, dF/aE = 0. This 
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can be written 

1 1 a b 
- cot ka  + - cot lb - (~ + 7) = 0. 
k 1 sin2 k a  sin 61 

If we were to assume Ibl - j.rrl<< 1 here, sin2 bl could be replaced by (61 - j . r )2  and we 
would return to  our previous results. But we now consider the opposite extreme and 
note that to nullify the b in the parentheses we must have sin2 61 + 03, which requires 1 to 
have a small imaginary part. Looking now at b >> A2a3 we have in fact ( I  = 1% + i12) 

l 2  - i (In b) /2b .  (19) 

k c o t k a - i l s g n ( 1 2 ) + A = 0  (20) 

For this 1 2 ,  cot bl - - i sgn(12) so that at the branch point we must have 

which is the same as equation (3) for 1 2 >  0, but with this difference in meaning: it is an 
equation to locate hB (the value of the branch point) rather than provide E, as a 
function of h. Nevertheless, from (20) we can still get the result of equation ( 5 ) ,  so 
that (taking sgn(12)> 0) 

Im(E  - h ) =  -- 

Since l 2  = 1: - 1: + 2i1112 = E + h, adding 2h to equation (21) yields 

For b + 03 this implies 

1 2 2 1/2 2 2 1 / 2  I m h ~ = - k ( 2 h + 3 )  - = ( 2 R e h ~ + % )  IT =O(;;i). (23) 
h a  A a  a 

Thus we find branch points spaced l / b  apart, a distance 1 / A 2  from the real h axis 
(contrast this to T~ - 1 / A J b  a3 l2  for b << A 2 a 3 ) .  Hence Eb, near the real positive h axis 
seems to be showing bad behaviour. 

Let us now go some distance into the complex h plane and turn some of these 
calculations around. Continue to assume that k never gets far from .rr/a. Then since 
l 2  = k 2  + 2h, Im h > 0 implies Im 1 > 0, implies cot 61 - - i sgn(12). Hence the equation 
for Eb becomes (almost) exactly the same as that for E, in the upper half h plane, 
while in the lower half h plane it coincides (nearly) with an incoming wave version of 
equation (3) and it therefore nearly gives the same discontinuity as E, across the real 
positive h axis. This happy situation obtains up until a distance 1 / A 2  from the real h 
axis, where Eb, for any finite b, picks up all sorts of singularities while E, shows n o  
untoward behaviour at  all. 

Define E L  = limb,,Eb. W e  have found that sufficiently far from the real positive h 
axis E L  = E, but that for ( Im hi< 1 /A2  they differ. Since E, is analytic it must be the 
case that the limit b +CO sends E b  into several different functionst. Call the one  that 
coincides with E ,  well off the real positive h axis, E L I .  W e  can ask whether E L 1  can 
be analytically continued to  the real positive h axis. The  answer is, certainly, since EL1 

t Function theory does not forbid this.bConsider [Z exp(- b Z ) +  l]/[Z +exp(- bZ)] for Re Z positive or 
negative. Another example is F ( Z )  = J-, exp( - Zx’) dx, for which FL = lim,,,F(Z), Re Z > 0 ,  is J(,/Z). 
FL can be continued to Re Z < 0 but is no longer given by the integral. 
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and E, coincide elsewhere and E ,  is defined on the real positive h axis. Call the 
analytically continued ELI, 8. 

The amusing part is that although ELI can be analytically continued to 8, for h real 
and positive, I? no longer is the solution of any quantum mechanical boundary value 
problem. The difference between E, and EL arises from the term e-*'* which though 
negligible in most of the complex h plane, becomes important for large enough b for 
real positive h. 

3. Conclusion 

For the simple model studied in this paper and for large but finite volume we have thus 
(through comparison of equations ( 5 )  and (16)) established our contention that the 
imaginary part of the energy which appears in the calculation of the decay rate of 
metastable states arises as a condensation of vertical cuts associated with level cross- 
ings. For any finite volume, the energy of a stationary state is real if the potential is 
real but the condensation of the vertical cuts mimics a cut (more descriptively, a tear) 
along the real axis with discontinuity precisely the imaginary part associated with the 
decay rate. A similar description can be given of metastability in the Ising model. 
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